blog post

How to Create Command Line Console Applications in .NET

A Big Thanks To The Sponsors of This Blog Post

Master The Clean Architecture. This comprehensive course will teach you how to ship production-ready applications using Clean Architecture. Learn how to apply the best practices of modern software architecture. Join 3,150+ students to accelerate your growth as a software architect.

Learn more

Master The Modular Monolith Architecture. This in-depth course will transform the way you build modern systems. You will learn the best practices for applying the Modular Monolith architecture in a real-world scenario. Join 1,050+ students to accelerate your growth as a software architect.

Learn more

Throughout my career, I have built a ton of console command-line applications. From simple to really complex ones with a lot of commands.

In this blog post, I want to introduce you to a Cocona Nuget package that helped me create a new command-line tool this year.

What is Cocona?

Creating console applications in .NET often involves parsing command-line arguments, handling options, and providing help messages. All these options require a lot of boilerplate-heavy and error-prone code.

Cocona is a micro-framework that streamlines this process, allowing you to focus on your application's core functionality. This library uses ASP.NET Core-like Minimal API style for handling commands.

Features supported by Cocona:

  • Command-line option semantics like UNIX tools standard (can handle both -rf / and -r -f /)
  • Support single command and multiple commands style:
    • myapp --foo --bar -n arg0 "arg1" (e.g. dir, cp, ls ...)
    • myapp server -m "Hello world!" (e.g. dotnet, git, kubectl ...)
  • Built-in help documentation support (see a help message by typing -h or --help)
  • Built-in similar commands suggestion
  • Highly modulable/customizable CLI framework (Cocona built on top of Microsoft.Extensions.* framework. Cocona natively supports Logging, DI, Configuration and ConsoleLifetime)

In this blog post, we'll use Cocona to build a command-line tool that performs the following operations on HTML files:

  • Minify: Compresses the HTML by removing unnecessary whitespace and comments.
  • Beautify: Formats the HTML to make it more readable.
  • Validate: Checks the HTML for syntax errors.

Brief Overview of Command-Line Arguments

In traditional .NET console applications, handling command-line arguments requires parsing the string[] args array in the Main method. Here is how you can access args in the Program.cs:

csharp
class Program { static void Main(string[] args) { var name = args[0]; Console.WriteLine($"Hello, {name}"); } }

In Program.cs with a top-level statements args is just magically available:

csharp
var name = args[0]; Console.WriteLine($"Hello, {name}");

Handling command-line arguments involves the following:

  • Manually splitting arguments.
  • Validating input.
  • Providing help messages.

Cocona abstracts away this complexity, allowing you to define commands and options using attributes and method parameters.

Here is how this code will look like in Cocona:

csharp
CoconaApp.Run((string name) => { Console.WriteLine($"Hello {name}"); })

It looks like a Minimal API endpoint with one argument that is coming from a command-line argument.

Understanding Commands, Arguments, and Options

When building command-line applications, it's essential to understand the components that make up the command-line interface (CLI). These components allow users to interact with your application.

Commands

A command is a specific action or operation that your application can perform. In the context of CLI applications, commands are typically the first word(s) after the application's name in the command line.

bash
git commit -m "Commit message"

Here, commit is a command that tells git to create a new commit.

In Cocona, commands are represented as methods provided into AddCommand:

csharp
var app = CoconaApp.Create(); app.AddCommand("commit", (string message) => { });

Arguments

An argument (or positional argument) is a value that a command requires to perform its operation. Arguments are typically specified after the command and are not prefixed by any indicator (like - or --):

bash
cp source.txt destination.txt

Here, source.txt and destination.txt are arguments to the cp (copy) command.

In Cocona, arguments are represented as method parameters decorated with the [Argument] attribute or inferred from the parameter position:

csharp
app.AddCommand("copy", (string sourceFile, string destinationFile) => { }); app.AddCommand("copy", ([Argument] string sourceFile, [Argument] string destinationFile) => { });

Options

An option (or flag) modifies the behavior of a command. Options are typically prefixed with one or two dashes (e.g., -o or --output) and can be followed by a value or act as a boolean flag.

bash
ls -l --color

Here, -l and --color are options that change how the ls command behaves.

In Cocona, options are represented as method parameters decorated with the [Option] attribute:

csharp
app.AddCommand("ls", ([Option('l')] bool longFormat, [Option("color")] bool useColor) => { });

Putting It All Together

When a user runs your application from the command line, they might provide a combination of commands, arguments, and options:

bash
appname command argument1 argument2 --option1 value1 -o value2
  • appname: The name of your application.
  • command: The action to perform.
  • argument1, argument2: Positional arguments required by the command.
  • --option1 value1, -o value2: Options that modify the command's behavior.

Building the HTML Tool with Cocona

We'll build a command-line application named HtmlTool that accepts commands to minify, beautify, and validate HTML files.

We'll define the following commands:

  • Minify: app.AddCommand("minify", ...)
  • Beautify: app.AddCommand("beautify", ...)
  • Validate: app.AddCommand("validate", ...)

Here is an initial template for our application:

csharp
var app = CoconaApp.Create(); app.AddCommand("minify", (string inputFile, string outputFile) => { }) .WithDescription("Minify an HTML file by removing unnecessary whitespace and comments"); app.AddCommand("beautify", (string inputFile, string outputFile) => { }) .WithDescription("Beautify an HTML file for better readability"); app.AddCommand("validate", (string inputFile) => { }) .WithDescription("Minify an HTML file by removing unnecessary whitespace and comments"); app.Run();

First, we create a Cocona application by calling CoconaApp.Create method. Next, we can register commands with an AddCommand method.

Implementing Minify Command

csharp
app.AddCommand("minify", ( [Option('i', Description = "The input file path")] string inputFile, [Option('o', Description = "The output file path")] string? outputFile = null ) => { var htmlContent = File.ReadAllText(inputFile); var minifiedHtml = MinifyHtml(htmlContent); var outPath = outputFile ?? GetOutputFilePath(inputFile, "min"); File.WriteAllText(outPath, minifiedHtml); Console.WriteLine($"Minified HTML saved to {outPath}"); }).WithDescription("Minify an HTML file by removing unnecessary whitespace and comments");

Command parameters:

  • inputFile: Positional argument for the input HTML file.
  • outputFile: Optional parameter (-o or --output) for specifying the output file path.

Here is the code for the helper methods:

csharp
string MinifyHtml(string html) { // Remove comments var noComments = Regex.Replace(html, @"<!--(.*?)-->", "", RegexOptions.Singleline); // Remove unnecessary whitespace including tabs var noWhitespace = Regex.Replace(noComments, @"\s+", " "); // Remove spaces between tags var minified = Regex.Replace(noWhitespace, @">\s+<", "><"); return minified.Trim(); } string GetOutputFilePath(string inputFile, string suffix) { var directory = Path.GetDirectoryName(inputFile); var filename = Path.GetFileNameWithoutExtension(inputFile); var extension = Path.GetExtension(inputFile); return Path.Combine(directory, $"{filename}_{suffix}{extension}"); }

Implementing Beautify Command

csharp
app.AddCommand("beautify", ( [Option('i', Description = "The input file path")] string inputFile, [Option('o', Description = "The output file path")] string? outputFile = null ) => { var htmlContent = File.ReadAllText(inputFile); var beautifiedHtml = BeautifyHtml(htmlContent); var outPath = outputFile ?? GetOutputFilePath(inputFile, "beautify"); File.WriteAllText(outPath, beautifiedHtml); Console.WriteLine($"Beautified HTML saved to {outPath}"); }).WithDescription("Beautify an HTML file for better readability");

Command Parameters:

  • inputFile: Positional argument for the input HTML file.
  • outputFile: Optional parameter for the output file path.

You can download the full source code for this application at the end of the blog post

Implementing Validate Command

To implement a Validate command, we need to download the following Nuget packages that allow parsing and formatting the HTML:

bash
dotnet add package HtmlAgilityPack dotnet add package AngleSharp
csharp
app.AddCommand("validate", ( [Option('i', Description = "The input file path")] string inputFile ) => { var htmlContent = File.ReadAllText(inputFile); var isValid = ValidateHtml(htmlContent); if (!isValid) { Console.WriteLine("The HTML is invalid."); return; } Console.WriteLine("The HTML is valid."); }).WithDescription("Validate an HTML file for syntax errors"); bool ValidateHtml(string html) { var htmlDoc = new HtmlDocument(); htmlDoc.LoadHtml(html); return !htmlDoc.ParseErrors.Any(); }

Command Parameters:

  • inputFile: Positional argument for the input HTML file.

Using the Application

I recommend publishing the HtmlTool app as a SingleFile, for example, for Windows:

bash
dotnet publish -r win-x64 -p:PublishSingleFile=true --self-contained false

Let's see how to use our HtmlTool application.

Displaying Help Information

Cocona automatically generates help messages. Run:

bash
HtmlTool --help
text
Usage: HtmlTool [command] [arguments] [options] Commands: minify Minify an HTML file by removing unnecessary whitespace and comments beautify Beautify an HTML file for better readability validate Validate an HTML file for syntax errors Options: -h, --help Show help message --version Show version

Minifying an HTML File

bash
HtmlTool minify -i sample.html -o minified.html

This will create a minified.html file with the minified content.

Beautifying an HTML File

bash
HtmlTool beautify -i minified.html -o beautified.html

This will create a beautified.html file with beautified content using 1 tab for indentation.

Validating an HTML File

bash
HtmlTool validate -i sample.html

This will output whether the HTML is valid or not.

Additional Features of Cocona

Asynchronous Commands

Define async commands by returning Task.

csharp
app.AddCommand("minify", async (string inputFile, string outputFile) => { // Async code here });

Subcommands

Organize commands using subcommands.

csharp
var htmlCommands = new CommandCollection(); htmlCommands.AddCommand("minify", ...); htmlCommands.AddCommand("beautify", ...); app.AddSubCommand("html", htmlCommands, "Commands for HTML processing");

Dependency Injection

If you need dependency injection, you can configure services when creating the app.

csharp
var app = CoconaApp.CreateBuilder() .ConfigureServices(services => { services.AddSingleton<IHtmlProcessor, HtmlProcessor>(); }) .Build(); // Use the service in your commands app.AddCommand("minify", ([FromService] IHtmlProcessor htmlProcessor, string inputFile, string outputFile) => { // Use htmlProcessor });

For more information, you can read an official Cocona documentation on their GitHub page.

Summary

Cocona simplifies the development of .NET console applications by reducing boilerplate code and providing powerful features out of the box.

Cocona has the following advantages:

  • Simplicity: Define commands, arguments, and options directly when adding commands without the need to write boilerplate code.
  • Automatic Help Generation: Cocona provides help messages without additional code.
  • Flexible Command and SubCommand Registration: Use either method-based commands or inline command definitions.
  • Asynchronous and DI Support: You can define async commands easily and use services from the DI container.

With Cocona you can quickly build feature-rich tools with minimal effort.

Hope you find this blog post useful. Happy coding!

You can download source code for this blog post for free

Improve Your .NET and Architecture Skills

Join my community of 2000+ developers and architects.

Each week you will get 1 practical tip with best practises and architecture advice.